

# The Aerosol/Cloud/Ecosystems Mission (ACE)

Mark Schoeberl NASA/GSFC





ACE will help to answer emerging fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems.

- Quantify aerosol-cloud interaction and assess the impact of aerosols on the hydrological cycle.
- Determine Ocean Carbon Cycling and other ocean biological processes.

#### Why two goals?

- Ocean biology measurements and Aerosols meet at the algorithm level
  - ➤ Accurate estimation of the aerosol contribution to the backscatter radiation are required to make precise ocean biosphere measurements.
  - Aerosol interference with ocean color measurements has been a major limitation in past missions
- But, there are common science problems between the two communities as well!
  - Fertilization of the ocean by dust; What is will happen in the future with climate change?
  - Aerosol formation by oceanic emitted DMS; How will ecosystem generation of aerosols affect the planetary energy budget?

### **Expected impacts**

- ACE will narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change.
- ACE will measure the ocean ecosystem changes and precisely quantify ocean carbon uptake.
- ACE measurements will improve air quality forecasting by determining the height and type of aerosols being transported long distances.

Goddard

Space

# **NAS Decadal Survey Description of ACE**



- Objective: "...reduce the uncertainty in climate forcing in aerosolcloud interactions and ocean ecosystem CO<sub>2</sub> uptake" - Decadal Survey pg 4-4
- ➤ Mission and Payload: ... LEO, sun-synchronous early-afternoon orbit. The orbit altitude of 500-650 km. The NAS mission consisted of four instruments:
  - · A multi-beam cross-track dual wavelength lidar for measurement of cloud and aerosol heights and layer thickness;
  - A cross-track scanning cloud radar\* with channels at 94 GHz and possibly 34 GHz for cloud droplet size, glaciation height, and cloud height;
  - · A highly accurate multiangle multiwavelength polarimeter to measure cloud and aerosol properties (This instrument, would have a cross-track and along-track swath with ~1 km pixel size.)
  - · A multi-band cross-track visible/UV spectrometer with ~1 km pixel size, including Aqua MODIS, NPP VIIRS, and Aura OMI aerosol retrieval bands and additional bands for ocean color and dissolved organic matter."

<sup>\*</sup> Doppler would be desirable too



# **ACE Science Objectives Extended**

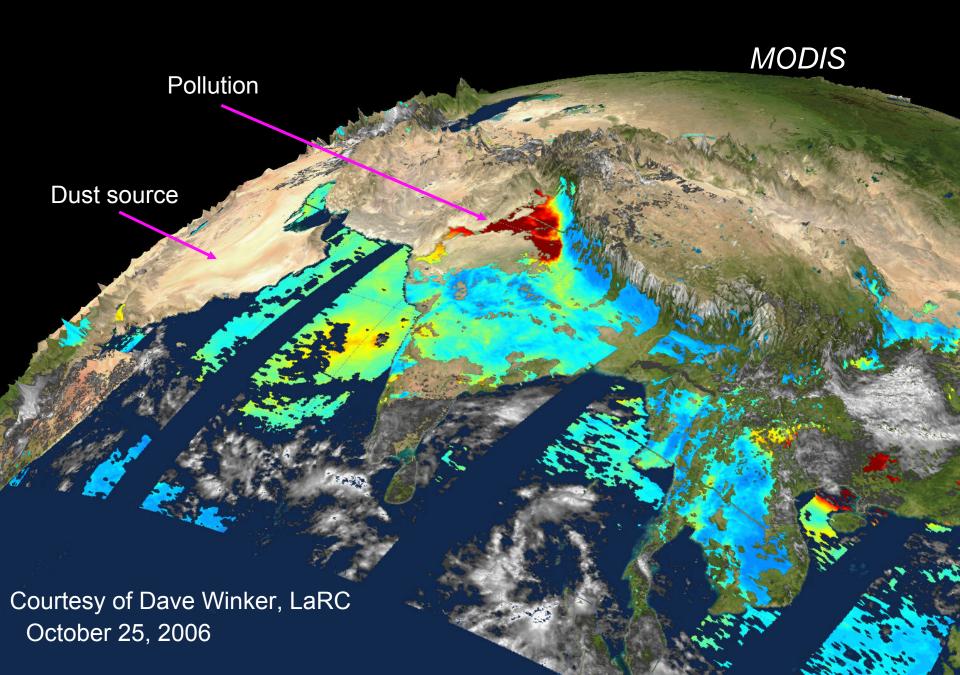
### ➤ ACE Extended – the ACOB mission

- NASA-sponsored workshops concluded that ACE should include more cloud measurement capabilities and assess the role of precipitation in aerosol-cloud interaction. This could be done by adding high and low frequency μ-wave radiometers to the potential payload.
  - The ACE SWG published a science White Paper that specifically addresses the rationale, requirements and resulting measurements associated with the ACOB mission.
- Thus, Aerosol Climate and Ocean Biology (ACOB) is identical to ACE except for two μ-wave radiometers that strengthen the measurement of clouds and precipitation -- ACOB adds significant science.
  - The addition of the µ-wave radiometers broadens the ACE swath
  - Consistent with "Vital Skies" white paper recommendation that preceded the ACE white paper.
- Adding µ-wave radiometers will increase the cost slightly

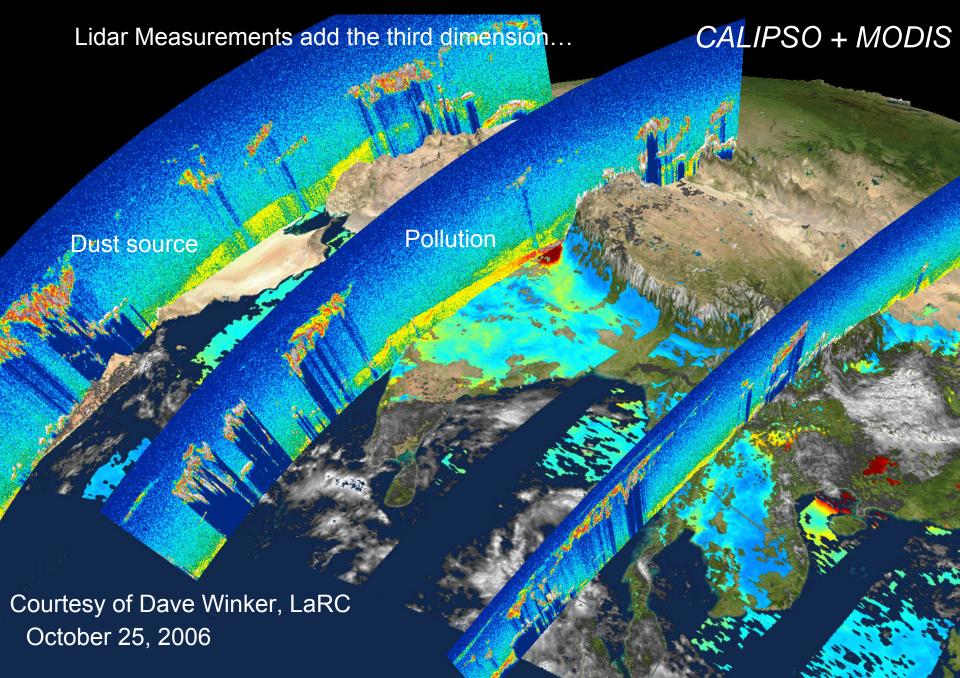



### **Aerosol – Cloud Community Measurement Strategy**



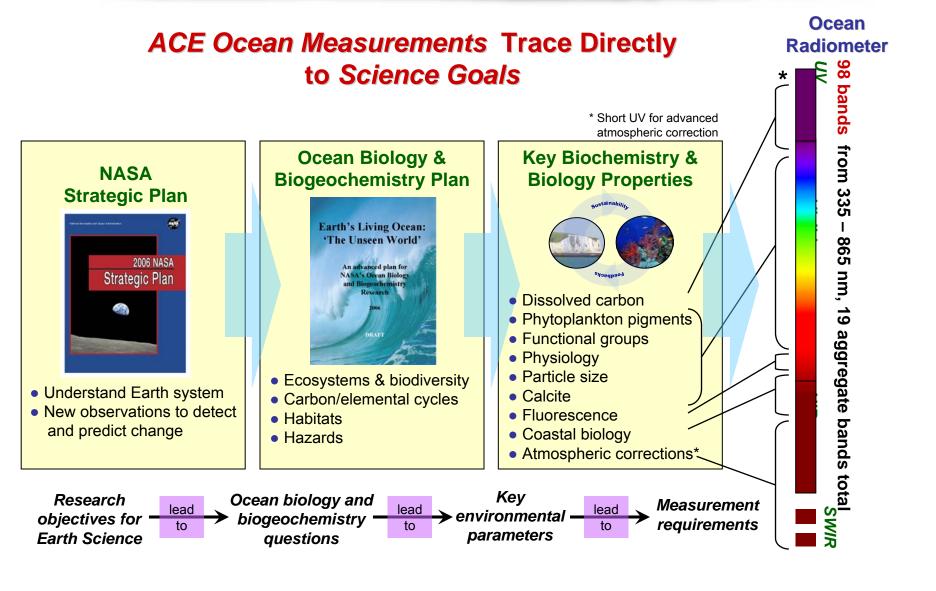

In order to understand the interaction between pollution, clouds and precipitation and to address air quality we need measurements that are sensitive to:

- particle distribution from fine mode to raindrops
- aerosol and cloud particle optical properties
- · aerosol and cloud heights
- · aerosol composition


Following the measurement suite pioneered by the A-Train, a combination of active and remote multi-wavelength sensors is needed.



# Aerosol and Cloud Observations over South Asia




# Aerosol and Cloud Observations over South Asia



## **Ocean Biology Research Goals**

Goddard Space Flight Center





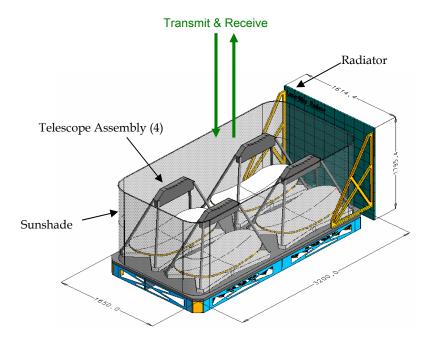
# **STM-based ACE/ACOB Instrument Requirement**

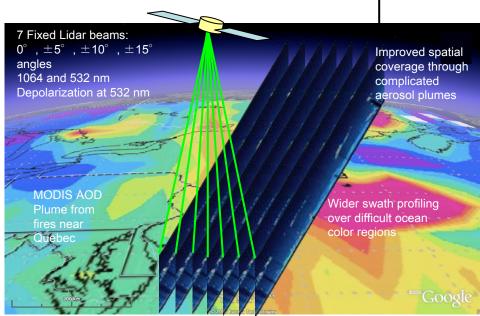
| Science Requirement                                                          | Instrument Type                                   | Mission  |
|------------------------------------------------------------------------------|---------------------------------------------------|----------|
| Characterization of aerosols types and modal distribution over a broad swath | Multi-angle polarimeter                           | ACE/ACOB |
| Altitude of and properties of aerosols/clouds                                | Backscatter multi-<br>beam /HSR lidar<br>(active) | ACE/ACOB |
| Cloud microphysics within the cloud                                          | Dual frequency cloud radar (active)               | ACE/ACOB |
| Ocean color                                                                  | Multi-band spectroradiometer                      | ACE/ACOB |
| Cloud height in the IR                                                       | IR stereo sensor*                                 | ACE/ACOB |
| Cloud particle type and ice water path over a broad swath                    | High frequency µ-wave radiometer*                 | ACOB     |
| Precipitation and liquid water path over a broad swath                       | Low frequency µ-wave radiometer*                  | ACOB     |

3 Day Coverage






Continue profile observations after CALIPSO.


Wider swath for better global coverage:

- multiple beams increase number of statistical-based mission observations
- enables better aerosol emission/source identification
- improved ability to track plumes during long-range transport
- combined lidar and imager observations (e.g. ocean biology)

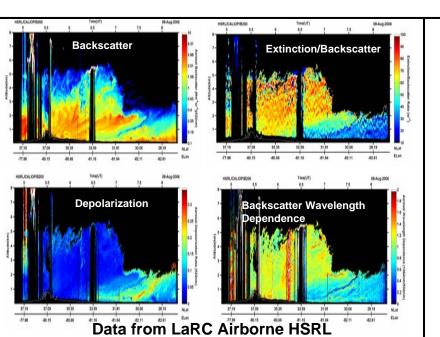
Beam spacing fine enough to resolve aerosol structure across most plumes, near

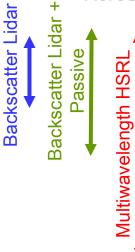
sources, and for downwind advection





1 Day Coverage





### Multiwavelength High Spectral Resolution Lidar (HSRL)

Goddard Space Flight Center

- ➤ Multiwavelength HSRL
  - Backscatter at 3 wavelengths (3  $\beta$  ) : 355, 532, 1064 nm
  - Extinction at 2 wavelengths (2 α ) : 355, 532 nm
  - Depolarization at 355, 532, and 1064 (dust and contrails/cirrus applications)
- ➤ Retrieved, layer-resolved, aerosol microphysical and macrophysical parameters
  - Effective and mean particle radius (errors < 30-50%)
  - Concentration (volume, surface) (errors < 50%)
  - Complex index of refraction (real:  $\pm$  0.05 to 0.1; imaginary (<50% if > 0.01)
  - Single scatter albedo (SSA) (±0.05)



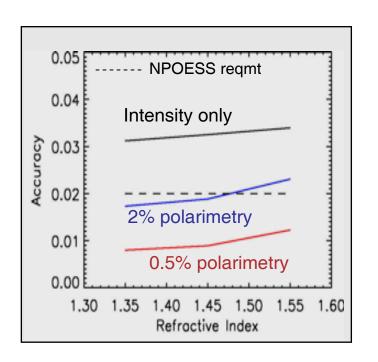


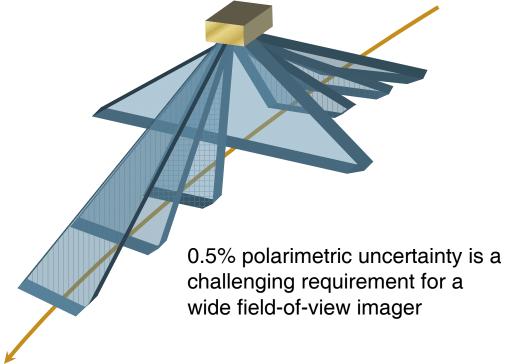


#### **Aerosol Lidar Information Content**

- Aerosol layer heights
- Qualitative vertical distribution (backscatter profile)
- Qualitative aerosol typing information
- Extinction profile derived from backscatter
- Extinction profile using column constraint
- Fine-coarse mode fraction vs. altitude
- Extinction profile
- Complex refractive index vs. altitude
- Aerosol size vs. altitude
- Single scatter albedo vs. altitude
- Concentration vs. altitude




### **MSPI - Advanced MISR Instrument**


Multiple cameras with extended spectral range, polarimetry, and wider swath

Synergistic use of multiple techniques reduces retrieval indeterminacies

- · multiangle: particle size, shape, retrievals over bright regions (deserts, cities)
- · multispectral: particle size (visible and SWIR), absorption and height (near-UV)
  - > nominal bands: 380, 412, 446, 558, 650, 865, 1375, 1610, 2130 nm
- · polarimetric: size-resolved refractive index and size distribution width

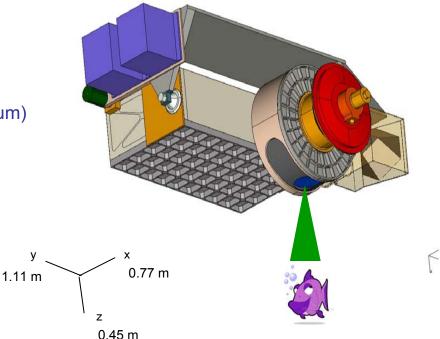
> nominal bands: 650, 1610 nm





# **Ocean Color Instrument (ORCA)**

Goddard Space Flight Center


# ORCA is a spectroradiometer designed for ocean remote sensing

### **Instrument Concept**

- Scanning Spectrograph
  - · +/-58.3 deg. cross-track scan
  - · 2500 km swath
- > 98 bands from 335 865 nm
- 19 aggregate bands total for ocean science (minimum)

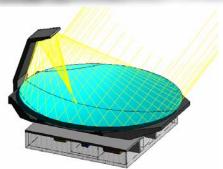
| Spectral Range      | SNR Specs |
|---------------------|-----------|
| Near UV (335-400nm) | 750-1500  |
| Visible (400-700nm) | 1000-1500 |
| NIR (700-1640 nm)   | 750-180   |

- Other bands can be used for aerosol/cloud science
- Two day global coverage from 650km orbit
- > Data collected to 75 deg. latitude of sub-solar point
- Monthly lunar calibration maneuver (dark side)
- Daily solar calibration (pole)
- Spectral calibration (solar-based)
- Sun glint avoidance (sensor tilting)
- > Five year design life



All instrument technologies are TRL ≥ 6



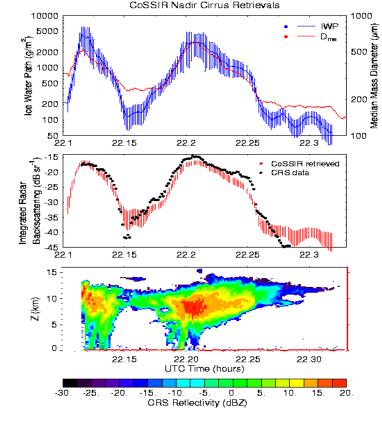

## **Dual Frequency Cloud Radar**

#### Products:

- > Cloud top height
- ➤ Microphysical profile information
- ➤ Particle phase/glaciation height
- Ice Water Content and Cloud Water Content
- > Precipitation detection

### Scientifically Desirable:

- > Swath
  - Even a narrow swath will be difficult because of the narrow back scattering phase function
  - It is unlikely that the cloud radar can point more than 10° off nadir
- More sensitivity to precipitation
- Sensitivity to low clouds (aerosols probably have more effect on them)
- > Doppler capability not a requirement



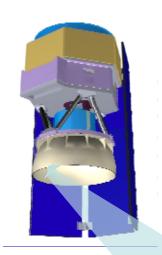

| Radar<br>Measurement               | Cloud/precip structure & microphysics |                     |
|------------------------------------|---------------------------------------|---------------------|
| Wavelength                         | 94GHz<br>(CloudSat,<br>EarthCare)     | 94GHz and 34<br>GHz |
| Cloud top height (± 1 km)          | ±                                     | ÷                   |
| Glaciation level                   | ±                                     | H                   |
| Precipitation                      |                                       | Ŧ                   |
| Droplet<br>distribution to<br>300µ |                                       | ÷.                  |
| Cloud water content profile        | Đ.                                    | ÷.                  |



# High Frequency µ-wave Radiometer






# Submillimeter/Millimeter (SM4) Radiometer

- Conical Scanning Imager with 1600 km swath
- 10-km spatial resolution => 0.36 pencil beam
- 6 Receivers > 12 Channels
- Vertical + Dual Polarization at 643 GHz

{183V, 325V, 448V, 643 V&H, and 874V GHz}

Three-point calibration (hot, cold, space cold)

 Heritage: MLS, CoSSIR, HERSHEL, MIRO



Earth



## Low Frequency µ-wave Radiometer (GMI)

# GPM Microwave Imager (GMI) Key Products

- Rain rates from ~0.3 to 110 mm/hr
- Increased sensitivity to light rain over land and falling snow

### ACOB-B would be a GPM daughter satellite

**Ball Aerospace and Technology Corporation (BATC) is developing GMI** 

#### **GMI Key Parameters**

Mass (with margin):~150 kg

Power:~125 W

Data Rate:~30 kbps

Antenna Diameter:~1.2 m

**Channel Set:** 

10.65 GHz, H & V Pol

18.7 GHz, H & V Pol Overla

Overlaps with the HF radiometer

23.8 GHz, V Pol

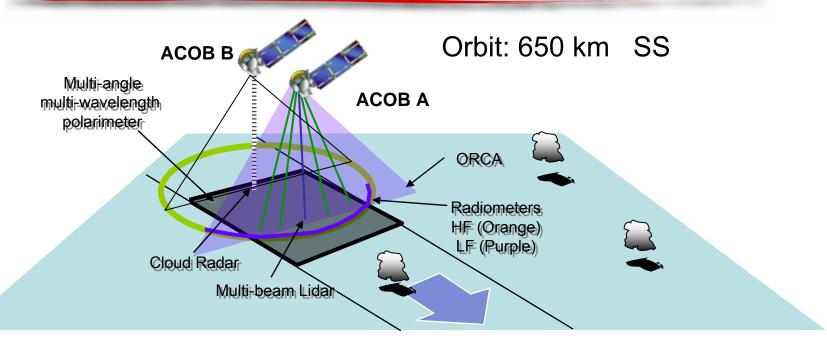
36.5 GHz, H & V Pol

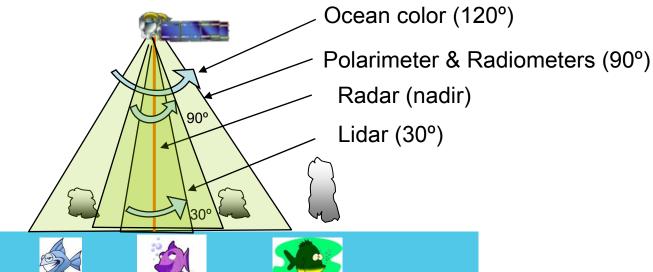
89.0 GHz, H & V Pol

166 GHz, H & V Pol,

183±3 GHz, V (or H) Pol

183±8 GHz, V (or H)

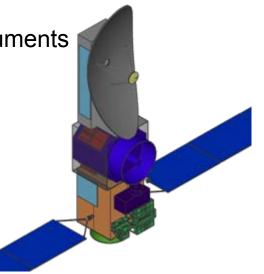

(166 and 183 GHz to have same resolution as 89

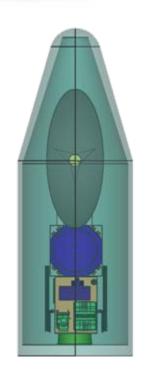

GHz)



# **ACE/COB: Two Spacecraft Observing Geometry**

Goddard Space Flight Center






# **Single Platform ACE Mission**

- This JPL version of ACE has four instruments
  - Cloud radar
  - MSPI
  - HSR Lidar
  - Ocean color radiometer
- Modified RSDO spacecraft bus
- 480 km altitude SSO
- Strengths
  - Optimizes orbit for atmospheric science and improves atmospheric measurement sensitivity compared to higher altitude orbit
  - Single Platform is more cost effective (cheaper)
- Weakness
  - Does not include IR measurements or μ-wave radiometers
  - Does not include multi-beam lidar.







# **Next Steps with ACE**

- ➤ June '08 science definition team meeting (by invitation)
  - ➤ Continue to refine measurement requirements
    - Polarimeter accuracy
    - > Radar requirements
    - > Lidar requirements
    - Combining instruments (e.g. ocean color and polarimeter)
- >2008-2009
  - ➤ Additional instrument and payload studies
  - > Development of schedule
- ➤ ACE is the most critical climate mission in the 2'd tier NAS group